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Abstract. The simple mean-spherical-approximation solution of the Omstein-Zemike equation 
in a hxd-sphere Yukawa liquid containing an arbitrary-size sphere is presented. The surface 
density of liquid pmicles on the sphere is expressed in terms of B simple function of a set of 
parameters. On the basis of this density expression. the work of forming a cavity from the point 
cavity in the liquid is calculated, and expressions For the pressure. the surface tension and the 
Tolman length are obtained. 

1. Introduction 

In this paper, we consider a liquid containing an arbitrary-size hard sphere. By regarding 
the diameter of this solute hard sphere as a scaling parameter, many statistical mechanical 
studies on the system have been made. 

The scaled particle theory (SPT), for example, starts calculations with an expression for 
the work of forming a cavity in the liquid using the fact that the cavity affects the remainder 
of the liquid in the same way as the solute hard sphere. The SPT was devised by Reiss et al 
(1959) (see also Lebowitz et al (1965) and Reiss (1965)) and has been extended to various 
cases (e.g., to the case of the non-spherical hard particle (Gibbons 1969, 1970)). The SPT 
has been extensively used to analyse thermodynamic features of liquids. 

As for works on the structural aspects of the system, there have been many studies 
attempting to solve the Omstein-Zernike (oz) equation; once we obtain the solution, this 
gives us information about thermodynamic aspects as well. Henderson, Abraham and Barker 
(Hm) (1976) and Percus (1976) calculated the 02 equation for a liquid in contact with a 
structureless surface; this system comesponds to our system in which the diameter of the 
solute hard sphere is infinite (Perram and White 1975). HAB formulated the 02 equation 
for the system and calculated the density profile of the hard-sphere liquid from the solution 
of the 02 equation obtained by Lebowitz (1964). Using the HAB formulation, Blum and 

with a somewhat general closure for the direct correlation functions. The case in which 
the solute hard sphere has an arbitrary diameter was considered by Waisman er al (1976). 
They solved the MSA equation in the case when, outside the cores, the direct correlation 
functions are zero between liquid particles and Yukawa like between the solute hard sphere 
and the liquid particles. As far as the present author is aware, however, the full solution of 
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Stell (1976) obtained a formal solution of the mean-spherical-approximation (MSA) equation ~ 

~ 
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the MSA equation for the system under consideration has not yet been extended further, in 
an explicit manner; this extension may be an interesting problem. 

Now, the system is a limiting mixture in the sense that the partial packing fraction of a 
component (the solute component) vanishes. For a general n-component hard-core system, 
Blum and Hoye (1978) and Blum (1980) gave the formal solution of the 02 equation 
with MSA closure consisting of n Yukawa terms. In the case of the Yukawa terms with 
factorizable coefficients, the present author (Ginoza 1985, 1986a,b) showed that the system 
of non-linear algebraic equations defining the coefficients of the Blum-Hoye solution can 
be simplified markedly, and in the single-Yukawa-term case, in particular, a full solution 
can be found. Recently, Blum eta1 (1992) generalized the n-Yukawa term case. In the next 
section, we shall discuss the above problem in the context of this research background. 

The aims of this paper are firstly to generalize the full MSA solution of Waisman et a1 
(1976) to the case in which the direct correlation functions outside cores are Yukawa like 
between liquid particles as well as between the solute hard sphere and the liquid particles 
and secondly to present expressions for the surface density of liquid particles on the sphere 
and the work needed to create a spherical cavity in the liquid. 

This paper is organized as follows: in section 2, we present the simple MSA solution 
of the OZ equation. Then, it is applied to the calculation of the surface density of liquid 
particles on the sphere in section 3. In section 4, the work of forming a cavity from the 
point cavity in  the liquid is calculated on the basis of the expression for the surface density. 
The paper concludes with a summary and discussion in section 5 .  

2. Simple MSA solution of the oz equation 

Let us consider a liquid consisting of two kinds of hard sphere; the numbers of the two 
types of sphere in volume V are N I  and N2, respectively. The static structure is described 
by the total correlation function hjj(r)  and the direct correlation function ci j (r)  which are 
related to each other via the 02 equation. This equation in the Baxter (1970) formalism is 

where p = ( N I  + N z ) / V ,  ci = N ; / ( N i  + N2) and kji = ;(U, -U;) with sphere diameters 0'1 
and ul. Equation ( la )  defines the Baxter function Qij(r), x,hile equation ( l b )  is equivalent 
to the OZ equation under the condition of non-singularity of the Baxter (1970) matrix. 

To these equations, we shall apply the following closure relations: 

gi,(r) = h; j ( r )  + 1 = 0 r < u ; ~  = $(U; + 9) (la) 

cjj(r) = (K,,/rfexp[-z(r - q,)] r > uij (2b) 

where Ki, and z are parameters either given by the MSA condition or determined from other 
physical criteria in the case of the generalized MSA (Waisman 1973). Equations ( l a )  and 
(16) with equations (2a) and (2b) have been solved (Blum and Hoye 1978. Blum 1980). In 
fact, the solution is given by the single-Yukawa-term case of the Blum-Hoye solution: 

(30) Q&) = Q$(r) + D;, exp(-zr) 
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where 

i A j ( r  - uij)(r - hji) + pj(r - aij) 

+ Ci,[exp(-zr) - exp(-zo-.)] ‘ I  for h,i < r < uij (3b) l o  otherwise. 

0 = 

The coefficients defining these equations are given by a number of equations related to the 
acceptable solution of the system of non-linear equations, and we do not quote them here 
because of their length. 

Now, our goal is to discuss the static structure of the mixture in the thermodynamic 
limit as 

N l / V  + p Nz /V  + 0 as V --f 00. (4) 

In this limit, the system under consideration may be equivalent to a liquid containing one 
hard sphere of diameter az; therefore, the resultant structure of the liquid does not depend 
on Ka. Without any loss of physical meaning, we can choose Kzz to be defined by 
Kzz = K:z/Kll. Now, let us define ZI and ZZ by ZI = 1 and Z2 = K12/K with K = KII. 
Thus, 

Ki, = KZiZj  (i, j = 1.2). ( 5 )  

It has been shown that, in the factorizable case such as equation (3, the expressions for the 
coefficients in equations (30) and (3b) can be exbemely simple and the system of non-linear 
equations can be reduced to the non-linear equation for a single parameter r (Ginoza 1985, 
1986a. b). 

The result in the thermodynamic limit given by equation (4). which can be obtained from 
the work of Ginoza (1986a, b) with the replacement of di in that work by Zi exp(izui)  and 
some straightforward calculations, is specified by a set of live parameters: q(= ixpu:), 
9 (= KZ;q/ul), ZUI, a1/u2 and u,ZZ/U~ZI. The explicit expression for the acceptable r 
will be given in the appendix, while the expressions for the coefficients in equations ( 3 4  
and (3b) are as follows: 

Aj = ( 2 ~ / A ) ( l  + 3 q ~ j / A a 1 )  + ( ~ / A ) P N u ~  (60) 

bj = (x/A)oj + ANU, (6b) 

Dij = -Ziujexp(zuij) ( 6 4  

(6d) C, = [ ~ i  - (~i/z)exp(-jzui)]uj  exp(zuij) 

where A = 1 - q, 

U:PN = (12q/xzui)(l + ZUI +rat + 3qlA)X1 

U I A N  = - [12q/A(~u1)~1(1 + ~ Z U I  f Tu] + 3q/A)Xi 

(6e) 

(68 

(6g) 

(6h) 

u i / ~ ;  = n r ~ , x , / 3 ~ x ~  2 

~lBiexp(4zu i )  = -roiXi - (1 t ~ Z U ~ ) U I A N  - ( ~ ~ u ~ / A u I ) X I  



The functions used above are defined as follows: 

with 

3. Surface density of liquid particles 

The surface density of liquid particles on the sphere is given by polglz(o&), where U; is 
4 1 2  plus a positive infinitesimal. It is easy to prove that the second term on the right-hand 
side of equation (lb) is acontinuous function of r at r = c q ~ ;  glz(o;) is determined by the 
jump in the derivative of Qij(r) at r = UIZ, and from equations (3a) and (36) we obtain 
(Blum and Hoye 1978, Blum 1980) 

2nuijgij(u$ = $ q A ,  + ,9j - zCi, exp(-zu;j). 

This equation, equations (6) and the use of equation (Al) yield the following: 

glj(u$) = g y  + ~ I , ( ~ , : ) ( X I / Z ~ ) ( X ~ / Z ~ )  ( 8 4  

where 

8:; = 1 1  + f(~)/(l + o~/uj)l/A (86) 

and clj(uG) is the direct correlation function at r = U;, given by equation (2b). 
Because of the assumption given by equation (5),  it may be meaningful to check the 

above result by comparing it with the limiting results of Waisman er a6 (1976) and Blum 
and Stell (1976). 

Now, Waisman ef al (1976) solved the 02 equation with the closure given in 
equations (2) in the case of K I  1 = 0 and K12 # 0 and gave an explicit result as follows: 

glz(ali;) = gF + C I Z ( ~ : ~ ) ~ ( Z ~ I ~  r l ) ( l -  V)2exp(zol) ( 8 4  
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where f ( s .  q )  = s 3 / [ t ( s ,  q )  + S(s, q)exp(s)] with U s ,  q)  = 12q[l+ 2q +s(l + i s ) ]  and 

The above case corresponds to the following choice of parameters in this paper: 6' + 0 
(therefore, I? --z 0) and u2Z1/alZ2 + 0. According to equations (7), this limit gives 
Z1/XI = @o(zuI. I?. 1) and &/Xz = 1. On the other hand, it is straightforward to show 
that 

S ( ~ , q ) = ( l  - ~ ) 2 ~ 3 + 6 q ( 1 - q ) ~ 2 + 1 S ~ Z ~ -  12q(I+2q). 

f(zm, o ) ( l -  ' I ) ~ ~ X P ( Z ~ I )  = 1/00(za I rl, 1). 

Therefore, equation (8a) in the limit is equivalent to equation (84. 
Next, Blum and Stell (1976) gave the formal solution to the MSA equation by using the 

HAB formulation of the 02 equation in a multicomponent liquid in contact with a wall. In 
the case of the closure given in equation (2b), the k-integration in their formal solution can 
be carried out by consideration of the contribution of the pole at k = -iz, and the solution 
gives 

gdu:2) = 1 - P ~ I L ( O )  +c1~(~. :2) / [1  - P&IW ( 8 4  

where 

with Qll ( r )  given by equation (3a). 

we obtain 

1 - ~611(0) = [ I +  f ( ~ ) l / A  

Now, in the limit ul/az + 0, after somewhat lengthy but straightforward calculation, 

- ( ~ K x : / ~ ~ ) [ Q ~ ( z u ~ ,  v . 0 )  + r u l o l ( ~ u 1 ,  ~,o)i/[i + ~ U ~ M Z U ~ , O ) I  

1 - ~ Q l l ( i z ) = [ ~ t r a l ~ o o ( z a l , ~ ) l ~ l / ~ I .  

These equations guarantee that equation (Sa) in this limit is equivalent to equation (86) 

4. Free energy of forming a cavity in the liquid 

Let us consider the problem of forming a cavity in a liquid; we shall calculate the reversible 
work W ( r )  required to produce a spherical cavity of radius r in the liquid, In the case when 
the cavity is macroscopic, thermodynamics give (Reiss eral 1959) 

W ( r )  = $nr3p + 4nrzu(l - 26/r) + KO (9) 

where p is the pressure and U is the planar surface tension. T h e  factor in parentheses in 
the surface work term represents the asymptotic dependence of the surface tension upon 
curvature. The quantity KO is related to the work of introducing the point cavity and has 
no counterpart in the macroscopic situation. 
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Statistically, W ( r )  can be calculated on the basis of the fact that the cavity affects the 
remainder of the liquid in the same way as the solute hard sphere in the system under 
consideration, and it is obtained by use of the following formula (Reiss e f  nl 1959): 

where g&) is the value of the radial distribution function g12(r) at the contact point 
(r = s), which is regarded as a function of s. 

Now, we shall employ the result of the previous section; glz(s) in the above integrand 
is given by equation (8a) with u12 = s and 02 = 2s - U ] .  Here, we may neglect the 
u2-dependences sucli as exp(-zu2) in the functions eo7 41 and & since r is macroscopic. 
In this case, from equation (8a) we obtain the following with the use of equations ( 7 4  and 
(AI): 

where 

i + z ~ ~ + - + r r ~ ~ -  377 ( z u l ) z A z I  Do] (1  la) 
A 1277x1 

with 

It should be emphasized that equation ( I  I )  is the result of an ui/s expansion of equation ( 8 4  
and it consists of just two terms. 

Following Waisman ernl (1976) and Blum and Stell (1976), we assume that DO is a finite 
constant for u2/01 >> 1 (see also next section). Now, it is easy to integrate equation (IO) 
using equation ( I  I) ,  and we obtain the following: 

~ ( r )  = d r r p ~ [ $ o [ ( r  + ful)’ - ( ~ u o ?  + $Iui[(r + f u i ~ ~  - i- KO. (12) 

Now, comparing equation (12) wtith equation (9), we obtain 
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5. Summary and discussion 

The simple MSA solution of the 02 equation in the liquid containing the arbitrary-size hard 
sphere is obtained from the MSA solution of the oz equation in the two-component hard- 
sphere Yukawa mixture. The solution is expressed in terms of explicit functions of the set 
of five parameters: q. 8, zul, o l / q  and olZz/o~Z];  in particular, the acceptable solution 
of equation (A I )  is obtained, explicitly. The simple result here is based on equation (5). It 
should be emphasized, however, that the assumption of equation (5) introduces no loss of 
physical meaning in the case of the thermodynamic limit given by equation (4). 

The expression for the surface density of liquid particles on the sphere is obtained as a 
simple function of the parameters; the first term on the right-hand side of equation (8a) is 
the effect of the hard-sphere interactions, while the second term is related to the Yukawa 
interaction. It may be interesting that the latter term is expressed in terms of the direct 
correlation function in which the parameters ZI and Zz are replaced by X I  and XZ, 
respectively, where X I  and XZ are given by equations (7a) and (7b), respectively. It is 
proved that the result given by equation (8a) gives the results of Waisman et al (1976) and 
Blum and Stell (1976) in each limiting case. This shows only the validity of the assumption 
of equation (5). 

On the basis of the expression for the surface density, the free energy of forming 
the cavity in the hard-sphere Yukawa system is calculated, and then expressions for the 
pressure, the planar surface tension and the Tolman length are obtained. In the calculation, 
it is assumed that DO defined by equation (1  IC) is a finite constant when uz varies in the 
region of UZ/OI  >> 1. Physically, this may be acceptable (Blum and Stell 1976, Waisman 
et nl 1976) because Do is such a microscopic quantity that DO = c ~ z ( u ~ ) / c l l ( o : ) .  

According to the SPT (Lebowitz et al 1965), 

When we choose K = 0 in our above result, equations ( 1  1) give Go = ( 1  + 2q)/A2 and 
G I  = -3q/2A2; o and 6 in the SPT agree with the values given by equations (14) and 
(IS), respectively. With the same choice, however, p given by equation (13) does not 
agree with the pressure in the SPT. In general, the MSA has the familiar thermodynamic 
inconsistency, but it is well known that the generalized MSA solves this difficulty and leads 
to better agreement with the results of, for example, machine computations (Waisman 1973, 
Waisman et a[ 1976). 
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Appendix. The explicit expression for the acceptable solution I? 

In the thermodynamic limit given by equation (5), r is defined by the following equation 
(Ginoza 1986a, b): 

r2 + zr + KZ,UX: = o (AI) 

where XI ,  defined by equation (8~). is a function of r. Equation (Al) can be written as 

X(X + l)(x +a)* = b (A2) 

where 

x = r/z 
a = @O(ZUl. II. 1 ~ / z u l @ l ~ z o ~ , I I ,  1) 

b = - ~ ~ / [ ( Z U I ) ~ ~ I ( Z U ~ ,  II. 1)12. 

The left-hand side of equation (A2) is shown in figure AI  as a function of x in the 
typical case with ZUI = 1 and q = 0.4. Points B and C in the figure are (x+. b+) and 
(L, b-), respectively, where 

b* = i( z p  ’+ : p +  & I &  i ( p  - :) Jm 
with 

p = - i ( a  2 - a + z ) .  3 

As is obviously understood from the figure, equation (A2) has a variety of solutions 
depending on the value of b. In previous work (Ginoza 1990), we discussed the manifold 
solutions and the acceptable solution of the equation, on the basis of the non-singularity 
of the Baxter matrix (Pastore 1988). According to the result given there, the acceptable 
solution is in the region of x > x+. 

In the present case, we can obtain the explicit expression for this solution by the classical 
method. It depends on the sign of D defined as follows: 

D = (ij?)’ + (fa)’ = (7!5)3b(b - b+)(b - b-) 

where 

01 = -&[(a2 - U ) ’  - 12b] 

and 

j? = -&[(a2 -U)’ - 9b(2az - 2a + $)I. 

The acceptable solution of equation (A2) is given as follows. 



MSA solution in /fs/ liquid containing a hard sphere 1447 

Figure AI. Plot o f f  (the left-hand side of equation (AZ)) as a function of x in a typical m e  of 
a liquid Z B I  = 1 and 7 = 0.4. Points B and C are the minimum point and the local maximum 
point, respectively. For a given value of b, the solutions of equation (A2) correspond to the 
intersections of the curve and the horizonlal line given by the ordinate value of b. 

(1) If b > b- or 0 > b > b+, 

x = [ ( ( K +  + K- + ;p)* + 3(K+ - KJ*)'/* - (K+ + K- -!- ; p p  

+ (K+ + K- - + p ) ' / *  - +(a + +) 

where 

K* = ( - f / 9 &  f i ) 1 / 3 .  

(2) If b- b > 0, 

x = (2Rcose - fp)"* + (-Rcosd - &Rsinb - +p)'/' 

+ ( - R c o s @ f & R s i n $ -  j p ) ' ' Z - { ( a + ~ )  

where 

R = & i  

and 

@ = 3 C O S - ~ ( - ~ ~ / ~ R ~ ) .  

(3) If b+ > b, there is no real solution. 

It should be pointed out, however, that the Baxter matrix is singular in the vicinity of 
point B, where the solution is unacceptable (Pastore 1988). 
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